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This chapter presents the FINSEC adaptive and intelligent data collection and ana-
lytics system for securing critical financial infrastructure. It enhances the intelli-
gent, resilient, automated, efficient, secure, and timely manner the collection and
analysis of security-related data for securing cyber-physical financial infrastructure
and services. Making security data collection and analysis intelligent and capable
of quickly spotting, learning from, and addressing zero-day threats is essential to
economizing of resources and accessing the right information at the right time.
This is achieved through the configuration of configurable collection probes and
the adaptation of different collection strategies. The chapter further addresses how,
inter alia, (i) the nature and quality of collected data affects the efficiency and accu-
racy of methods of attack detection and defense, (ii) the detection capability can be
improved by correlating wide-ranging data sources and predictive analytics, (iii) the
rate of the data collection at the various monitoring probes is tuned by manag-
ing the appropriate levels and types of intelligence and adaptability of security
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monitoring, (iv) the optimization of bandwidth and storage of security informa-
tion can be achieved by rendering adaptiveness and intelligence and by integrating
smart security probes and a set of adaptive strategies and rules, and (v) the increased
automation is achieved through a feedback loop of collection, detection, and pre-
vention that allows the early detection and prevention of security compromises and
consistently makes security analysis more effective.

7.1 Introduction

Cyber-physical attacks are growing rapidly and posing a substantial risk to the sta-
bility of the overall financial sector. Attacks are increasing in number, scope, and
sophistication, making it difficult to predict their total impact. The nature and fre-
quency of cyber risks have changed rapidly in the directions not anticipated before,
and more risk-managers are becoming aware of the value of engaging with Fintech
R&D to keep track of new types of attack surfaces and risk management options,
such as FINSEC is addressing. Leading security researchers are coming to the same
conclusions (e.g., the state-of-the-art 2019 Cyber Risk Outlook report [1]). In this
chapter, we look further ahead than this Cambridge report, blending risk policy,
risk technology, and risk-management best practice. Our findings include:

• It is essential to track and maintain the security of critical financial infrastruc-
ture and services through the collection and analysis of security-related data
in an intelligent, resilient, efficient, secure, and timely manner.

• Making security data collection and analysis intelligent and capable of quickly
spotting, learning from, and addressing zero-day threats is essential to econo-
mizing resources and accessing the right information at the right time through
the configuration of data collection probes and the adaptation of different
collection strategies.

• The nature and quality of collected data affects the efficiency and accuracy of
methods of attack detection and defense.

• The detection and defense capability can be greatly improved by correlating
wide-ranging data sources and by predictive analytics.

Adversaries may attack financial services, damage infrastructure, manipulate crit-
ical information, therefore causing serious financial loses. Considering the risks of
a large-scale financial network system, it is important to calculate not only the
risks of separate nodes but also the risks from connections. Furthermore, adaptive
attackers will adapt their strategies to the current security situation and to newly
deployed countermeasures. Such emerging attacks can become very sophisticated
and can be coordinated, persistent, collaborative, or cooperative with specialized
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attack expertise. Therefore, there is a need to implement adaptive and intelligent
data collection and analytics to cope with a constant update of attack vectors.

The amount of data collected by financial organizations to maintain security is
growing every day, and these huge amounts of data can no longer be stored effi-
ciently or processed in real time. Therefore, due to a high dimensionality of data
collected from cyber-physical systems, a constant growth of data due to improve-
ments and exposure to new vulnerabilities, and a constant update of attack vec-
tors, Deep Learning (DL)-based security models are essential for adaptability and
extendibility with the data drift, continuous discovery of new system threats, and
vulnerabilities [2]. In this chapter, we present a model for developing an adaptive
and intelligent data collection and analytics that adapts the collection rate and stor-
age state configuration to the analytical systems, threats detected by those systems
over time, and economizing the cost of collection and storage resources.

The rest of the chapter is organized as follows: Section 7.2 briefly reviews related
work. Section 7.3 sets the scene by describing data collection and analytics. Sec-
tion 7.4 presents the architecture of adaptive and intelligent data collection and
analytics and its implementation in the overall FINSEC Reference Architecture
(RA) highlighting its peculiar characteristics. Section 7.5 presents the adaptive data
collection strategies which are used to economize use of resources and optimize
bandwidth and collection rate. Section 7.6 describes the implementation of differ-
ent modules and the validation of the predictive analytics algorithms for intelligent
processing. Finally, Section 7.7 concludes the chapter.

7.2 Related Work

Adaptive data collection refers to the collection of security-related data to improve
collection efficiency, ensure collection accuracy, reduce the amount of collected
data to minimize the effect of data collection, and automate the data collection
by adjusting to different environmental contexts and situations. Several authors
address adaptive data collection in different settings.

Lin et al. [3] present the design and implementation of an adaptive security-
related data collector based on network context in heterogeneous networks, and
they used adaptive sampling algorithm to reduce the amount of collected data.
The authors argue that sampling methods to collect data and the collection fre-
quency need to be determined according to specific conditions. For instance, if the
data variation is large, the collection interval should be reduced, so as to reflect
the variation trend of data; and if the data variation is small, the collection inter-
val can be increased, so as to reduce the amount of data collected while ensur-
ing the accuracy of data collection. They propose an adaptive collection frequency
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adjustment strategy based on predicted variation ratio. They argue that regression
algorithms can be used for prediction, such as linear regression, support vector
regression (SVR), logistic regression, KNN regression, etc. They further argue that
data variation can also be represented by calculating the ratio of predicted accuracy,
which is the ratio of the predicted value of the data to the real value of the data.
When the predicted value of the data is close to the real value, it indicates that the
data variation is small, and when the predicted value of the data is very different
from the real value, the data variation is large.

Habib et al. [4] investigated self-adaptive data collection and fusion for body
sensor networks. Their approach uses an early warning score system to optimize
data transmission and estimates in real time the sensing frequency, and uses a data
fusion model using a decision matrix and fuzzy set theory. Their adaptive sam-
pling algorithm adapts the sampling rates of sensors to the vital sign dynamic evo-
lution. An adaptive data collection protocol was proposed in [5], which collects
periodically sensor readings and prolongs the lifetime of a periodic sensor network.
Authors’ sampling rate adaptation is based on the similarity between periods of
cycles using Euclidean distance measure to adapt its rate of sampling according
to the dynamic modification of the monitored environment. An efficient adap-
tive sampling approach based on the dependence of conditional variance on mea-
surements varies over time as proposed in [6], which adapts sampling rates to the
physical changing dynamics and minimizes over-sampling, and improves resource
efficiency of the overall network system. An adaptive sampling approach for energy-
efficient periodic data collection in sensor networks is proposed [7]. The approach
provides each sensor node the ability to identify redundancy between collected data
over time, by using similarity functions and allowing adaptive sampling rate.

Ji and Ni [8] present an adaptive data collection method based on the network
data correlation and variation routines. Their method selects the data collection
in association with network data variation and adjusts collection frequency based
on the ratio of the data variation amplitude. It can adjust data collection accord-
ing to network load to reduce the burden on network bandwidth and processing
resources. The frequency adjustment strategy can reduce data collection times when
the data vary gently and increase data collection times when the data vary dramat-
ically. Tang and Xu [9] investigate data collection strategies in lifetime-constrained
wireless sensor networks. Their objective is to maximize the accuracy of data col-
lected. They developed adaptive update strategies for both individual and aggregate
data collections.

Lin et al. [10] highlight the challenges posed in collecting security-related
data, which indicates relevance to security, safety, privacy, and trust, in the big
data era. Their examples of making data collection difficult are due to its 5Vs
(volume, variety, value, velocity, and veracity) characteristics and further the
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5G networks’ characteristics of being heterogeneous, supporting device-to-device,
machine-to-machine and other communication technologies, and different net-
works such as Internet, Mobile Ad hoc Networks, mobile cellular networks and
wireless sensor networks. Security-related data fundamentally affects the efficiency
and accuracy of attack detection and defense methods. Jing et al. [11] survey exist-
ing studies about security-related data collection and analytics for measuring the
Internet security. They argue that for measuring the security of the internet and
detecting the Internet attacks, collecting different categories of data and employ-
ing methods of data analytics are essential. A number of surveys of data collection
approaches exist [3, 10–15], addressing different settings.

As demonstrated above, there exist many adaptive data collection methods using
different strategies. However, few of them are aimed at adaptive multi-layer data
collection applying artificial intelligence and deep learning. This chapter addresses
adaptive and intelligent multi-layer data collection through the correlation of wide-
ranging data sources and predictive analytics to improve the detection capability,
the improvement of the quality of collected data that affects the efficiency and accu-
racy of methods of attack detection and defense, the rendering of adaptiveness and
intelligence, and the integration of smart security probes and a set of adaptive strate-
gies and rules. It also addresses the different means for physical and cybersecurity
as means of tuning the rate of the data collection at the various monitoring probes.

7.3 Data Collection and Analytics

7.3.1 Requirements

7.3.1.1 Data collection requirements

Before going through data collection in a physical system, one may verify a set of
requirements aspects that are identified and summarized below, but more details
can also be found in [15]:

• Efficiency: On one hand, the collected data should be compact, the unnec-
essary data that are useless in attack detection should not be collected. On the
other hand, the needed data should be collected in a real-time and high-speed
manner to decrease the time delay of attack detection.

• Privacy: In the data collection process, the sensitive information of some
particular data should be protected.

• Resource consumption: The consumption of resources including power,
memory, and network bandwidth in the process of data collection and data
communication should be well considered.

• Adaptability and Intelligence: The data collection process should be adapt-
able to the context of the physical and cyber-world, as well as to the
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security context. In particular, the rate of information acquisition/collections,
along with the type of data collected, should be adaptable to changing secu-
rity contexts. Adaptability should be performed in an intelligent way, i.e.,
towards optimizing the amount of information available for the security task
at hand, while ensuring availability of the proper information.

• Configurability: To support adaptability and configurability in data collec-
tion, the data collection systems to the used in the project (e.g., probes) must
be configurable.

• Automation: To automate the data collection and adaptation by adjusting
to different environmental contexts and situations. Machine Learning (ML)
techniques are helpful for implementing automatic adaptable solutions capa-
ble of adjusting to new situations and timely reacting in the face of threats
and anomalies [16].

The authors [10] specify 13 functional requirements and 5 security require-
ments, and 9 functional objectives and 6 security objectives, and the relationship
between these.

7.3.1.2 Quality attributes for data analytics

The authors in [17] present a systematic review aimed at identifying the most fre-
quently reported quality attributes and architectural tactics for big data security
analytic systems. Their findings are twofold: (i) identification of most frequently
reported quality attributes and the justification for their significance for big data
cybersecurity analytic systems; and (ii) identification and codification of architec-
tural tactics for addressing the quality attributes that are commonly associated with
big data cybersecurity analytic systems. The identified tactics include six perfor-
mance tactics, four accuracy tactics, two scalability tactics, three reliability tactics,
and one security and usability tactic each.

• Performance is a measure of how quickly a system responds to user inputs
or other events.

• Accuracy is a measure to which a system provides the right results with the
necessary degree of precision.

• Scalability is a measure of how easily a system can grow to handle more user
requests, transactions, servers, or other extensions.

• Reliability is a measure of how long a system runs before experiencing a
failure.

• Usability is a measure of how easy it is for people to learn, remember, and
use a system.
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• Interoperability is a measure of how easily a system can interconnect and
exchange data with other systems or components.

• Adaptability is a measure of how easily a system adapts itself to different
specified environments using only its own functionality.

• Modifiability is a measure of how easy it is to maintain, change, enhance,
and restructure a system.

• Generality is a measure of the range of attacks covered by a security analytic
system.

• Privacy assurance is the measure of the ability of a system to carry out its
business according to defined privacy policies to help users trust the system.

• Security is the measure of how well a system protects itself and its data from
unauthorized access.

• Stealthiness is the measure of the ability of a security analytic system to func-
tion without being detected by an attacker.

7.3.2 Data Sources

Data sources from which security event data are collected include, but are not lim-
ited to, network traffic data, firewall logs, web logs, system logs, router access logs,
database access logs, and application logs, system statistics, etc. [11].

7.3.3 Data Collection Categories

The following categories of data collection can be distinguished [11].

Packet-level data: A packet consists of a packet header and a packet payload. They
are generated when using protocols like TCP, UDP, ICMP, etc. Based on this defini-
tion, a classification of these data for detecting DDoS and Worm attacks can be as:
Source/Destination IP address, Source/Destination port, Time to live, Timestamp,
Packet payload, Packet size, and Number of packets.

Flow-level data: In high-speed networks with rates up to hundreds of Gigabit per
second, collection of packet-level data requires expensive hardware. Thus, flow-
level data was introduced and can be considered as a stream of packets. The flow-
level data is classified into Flow count, Flow type, Flow size, Flow direction, Flow
duration, and Flow rate.

Connection-level data: A connection is defined as the aggregated traffic between
two IP addresses from the perspective of a specific network. A connection will con-
tain many flows. Thus, a difference between a connection and a flow is the flow
does not have size restriction, that is to say, the flow is generated even if a single
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packet has been exchanged. But, a connection is generated by at least two packets.
The connection level data can be divided into the following types: Connection size,
Connection duration, Connection count, and Connection type.

Host-level data: This data is collected from a host. This data provide comprehen-
sive knowledge of system events as it records host activities, changes, resource con-
sumption, etc. These changes are widely used in Host-based IDS. We mention in
the following two commonly used types of host-level data in attack detection: CPU
and Memory usage and Operation log.

7.3.4 Security Probes

Security probes are created to capture and assess the overall security of servers, net-
works, databases, etc. and to generate events when they find problems, and have
the following abilities:

Topology probes: Probes that have the ability to capture network topology, inter-
face, bridge, namespace attributes. Examples include ethtool (a utility for Linux
kernel-based operating system for displaying and modifying some parameters of
network interface controllers and their device drivers), Network system simulation
software (this includes Software-Defined Network or similar software to simulate
the real network functions; An example is the Open vSwitch Database management
protocol), Simple Network Management Protocol (an Internet Standard protocol
for collecting and organizing information about managed devices on IP networks
and for modifying that information to change device behavior), Telnet (protocol
to provide a bidirectional interactive text-oriented communication facility, which
can be used to connect to network equipment and extract management data),
Network Interface Filtering Card (a hardware-based probe that can be remotely
configured to focus in more detail on selected traffic and/or filter out malicious
forms), etc.

Flow probes: Probes that have ability to follow a flow along a path in the topol-
ogy. Examples include sFlow (sampled flow) (an industry standard for packet
export at Layer 2 of the OSI model), Data Plane Development Kit (a set of
data plane libraries and network interface controller drivers for fast packet pro-
cessing, currently managed as an open-source project under the Linux Founda-
tion), libpcap (commonly used packet capture library, which also defines the de
facto external format for packets), sCap (a more efficient implementation of the
standard libpcap, using shared memory and so-called subzero packet copy), Inter-
net Protocol Flow Information Export (a protocol for exporting Internet Proto-
col flow information from routers, probes and other devices), NetFlow (a feature
of Cisco routers that provides the ability to collect IP network traffic as it enters
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or exits an interface), Flowmon probe (a hardware-based probe that uses IPFIX
protocol), etc.

7.3.5 Predictive Security Analytics for Adaptive Data
Collection

Predictive analytics are used to predict security attacks, threats, and anomalies.
Based on the predicted security events, mitigation measures can be triggered, for
example, to adapt the data collection rate, close a door, etc. It requires constant
monitoring, capturing, and processing large amounts of various data. These data is
often redundant. Thus, the storing and processing resources are used unnecessary,
and the same prediction results can be achieved with significantly less data. It is,
therefore, important to develop lightweight predictive data analytics that can give
earlier indications about possible cyberattacks based on less data amount and pro-
cessing. This will allow reducing the amount of collected and processed data while
maintaining the required level of threat detection. We need to select the algorithms
that give best prediction results and can, therefore, function as a base for the pre-
dictive analytics. For this purpose, several machine learning, deep learning (DL),
artificial intelligence (AI) algorithms are to be selected and tested using different
datasets available online.

DL or deep neural networks are especially relevant for scenarios where massive
datasets are collected. One of the principal DL features is the ability of a DL model
to adapt to the behavior of systems to previously unseen scenarios in cybersecurity,
thus ensuring generalization of the models [2], which is one of the key goals of AI.
Trust and explainability are two other important features to ensure trustworthiness
of AI-based cyber systems. Recent research in Explainable AI (XAI) successfully
showed how deep neural-network-based intrusion detection systems can help in
improving user trust [18]. Adversarial learning offers an approach to increase our
understanding of these models. Adversarial learning exploits how a DL system can
be “fooled” to wrong conclusions. This knowledge strengthens the system against
incorrect intrusion detection decisions. Hence, trust of the system is increased and
explainability is improved [18].

Berman et al. [19] survey DL methods for cybersecurity applications covering
a broad array of attack types including malware, spam, insider threats, network
intrusions, false data injection, and malicious domain names used by botnets. They
discussed the DL architecture and training process for popular and emerging meth-
ods ranging from RNNs to GANs and their application to a wide variety of these
cybersecurity attack types.

In this Project, we among other things use AI-based (i.e., deep learning mech-
anisms) predictive analytics that enable us the identification of complex attack
patterns.
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7.4 Adaptive and Intelligent Data Collection
and Analytics

This section first presents the architecture overview and its implementation in the
overall FINSEC Reference Architecture (RA) followed by the descriptions of the
various features and services. The security of critical financial infrastructure and
services must be tracked and maintained through the collection and analysis of
security-related data in an intelligent, efficient, secure, and timely manner. Mak-
ing security data collection and analysis intelligent and capable of quickly spot-
ting, learning from, and addressing zero-day threats is essential to economizing of
resources and accessing the right information at the right time through the con-
figuration of configurable data collection probes and the adaptation of different
collection strategies.

The nature and quality of collected data affects the efficiency and accuracy of
methods of attack detection and defense. The detection capability can thus greatly
be improved by correlating wide-ranging data sources and by predictive analytics.
Managing appropriate levels and types of intelligence and adaptability of security
monitoring is achieved through different means for adaptive data collection and
predictive analytics. This is important for physical and cybersecurity as a means of
tuning the rate of the data collection at the various monitoring probes. The cyber
and physical data need to be correlated taking the latency of communication into
account.

7.4.1 Adaptive and Intelligent Data Collection and Analytics
Architecture

Figure 7.1 shows the architecture of the multi-layer adaptive and intelligent data
collection and analytics, which extends the classical data collection and analytics
process that includes data collection, data parse, data analysis, and data processing.
The approach makes this process adaptive by introducing feedback control loop and
letting the data collection depends on the result of the last data processed. Adapt-
ability refers to how a collection mechanism can adjust to different environmental
contexts and situations.

In Figure 7.1, the process modules include Monitor (data collector), Analyser
(data parser & analyser), Adapter (data processor), and Multi-layer Probes (Imple-
mented FINSEC Probes). The arrow between modules is data flow and control
direction.

The FINSEC project integrates smart security probes and a set of adaptive
strategies for the multi-layer data collection functionality, which includes render-
ing adaptiveness and intelligence, optimizing bandwidth and storage of security
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Figure 7.1. FINSEC adaptive and intelligent data collection and analytics architecture.

information, and boosting the intelligence of the probes. Security data analytics
methods are integrated in the process at appropriate level-specific analytics. While
predictive/regression algorithms such as linear regression, support vector machine
(SVM), logistic regression, KNN regression, and Random Forest (classification &
regression), K-nearest neighbors, and Decision Tree have been evaluated for the
lightweight analysis of adaptive strategies with promising accuracy results of 93%–
99%, deep learning mechanisms are under evaluation for the identification of com-
plex risk and attack patterns. These will be described in a later section. A set of rules
(both static and adaptive) will be defined for data processing and analysis, config-
uration, collection, and adaptation.

In the Multi-layer Probes, the FINSEC Data Collection API is called by the
actual implemented probes, e.g., skydive, to collect data from cyber and physical
assets at different levels (individual asset, combined assets, integrated process, and
supply chain).

The Monitor collects the data using the FINSEC Data Collection API and stores
it in the DB at the Data Layer. It analyzes and summarizes the probe data from some
probe types and integrates the probes and the Data Layer. The Monitor notifies the
Analyser module of collected data.

The Analyser module, such as anomaly detection and predictive analytics, ana-
lyzes the data and converts the standard data to service data (threats, anomalies,
attacks, etc.). Further, it passes the service data to the Adapter module.

The Adapter module disposes the service data depending on its value such that
it adapts collection strategies and controls the probes through the FINSEC Miti-
gation API and sends notification to external modules such as alarms and/or data
visualization tool or database.

The combinations of Deep Learning algorithms and statistical approaches are
utilized to deliver intelligence on anomalies and attacks with the sort of speed to
maximize the value of that intelligence. This allows to (i) enhance components of
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the FINSEC toolbox with more data and predictive security capabilities; (ii) train
predictive models running different iterations of different algorithms; (iii) use dif-
ferent models on the same set of data, determine the one that best fits; (iv) estab-
lish predictive models to be used for wider use in the financial sector; (v) correlate
cyber-physical events and detect cross domain anomalies through pattern detection
engine; and (vi) learn typical behavior of the system and detect anomalies through
machine learning engine.

The issue of false positives will be addressed to ensure reliability and accuracy. For
the quality attribute performance, accuracy, and security & privacy [17, 20, 21],
different measures are taken. Performance can be met through ML algorithm opti-
mization, feature selection and extraction, data cutoff, etc. Accuracy can also be
improved through alert correlation, combining signature-based and anomaly-based
detection, etc. The Security and privacy of the collected and analyzed data is pro-
tected through encryption and cross-cutting security services of the FINSEC plat-
form such as authenticity and integrity protection.

7.4.2 Implementation in the FINSEC Reference Architecture

The FINSEC Reference Architecture (RA) provides capability to foster new, intel-
ligent, collaborative and more dynamic approaches to detect, prevent, and mitigate
integrated (cyber & physical) security incidents, intelligent monitoring, and data
collection of security-related information (the topic of this section); predictive ana-
lytics over the collected data; triggering of preventive and mitigation measures in
advance of the occurrence of the attack; and allowing all stakeholders to collaborate
in vulnerability assessment, risk analysis, threat identification, threat mitigation,
and compliance.

Figure 7.2 depicts the implementation of the adaptive and intelligent data col-
lection and analytics architecture with the process modules in the overall FINSEC
RA, closing the adaptive loop of Monitor, Analyse, and Adapt/Configure through
a feedback control loop. The Monitor module maps to the Data Collection mod-
ule in the FINSEC RA, the Analyser module maps to the Predictive Analytics,
Anomaly Detection, and Risk Assessment services in the FINSEC RA, and the
Adapter module maps to the Mitigation service and Mitigation Enabler in the
FINSEC RA.

Having data collected with flexible granularity on one hand and with high
redundancy on the other allows the correlation of information between locations
and layers and the use of various algorithms to produce insights. In this way,
increased automation and optimization of bandwidth and storage of security infor-
mation is achieved using the adaptive collection strategies such as security threats,
content variation, collection/sampling rate, bandwidth variation/communication
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Figure 7.2. Implementation of the adaptive and intelligent data collection and analytics

architecture in the FINSEC reference architecture.

dynamics, application needs, context changes, and storage needs. This automation
can also be controlled through the FINSEC Dashboard user interface allowing the
human in the loop.

7.4.3 Automation Through Predictive Analytics

As mentioned above, the increased automation and optimization of bandwidth and
storage of security information is achieved using adaptive data collection strate-
gies such as security threats, content variation, collection rate, bandwidth variation,
communication dynamics, application needs, context changes, and storage needs.
This, in turn, is achieved through predictive analytics and is achieved at different
levels [16]:

• Automation of the data collection, which is inherently automatic in capturing
and recording of data for later processing and analysis;

• Automation of the data pre-processing, normalization, and preparation to
feed the inputs of the system;

• Automation of the analysis, training, and learning from the collected data,
and the detection process;

• Automation of the mitigation process for taking mitigating actions to avoid
escalation of the detected anomaly, intrusions, attacks through either passive
reaction such as raising alarms or stopping of the system or active reaction
such as avoiding system failure.
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The FINSEC solution adds another level of automation by tying these automa-
tion levels to an overall adaptive and automation level through the feedback con-
trol loop (monitor, analyze, and adapt) increasing the automation of monitoring,
analyzing, and adapting to the environmental context. This automation and adap-
tive nature of the FINSEC data collection and analytics allows us to meet quality
attributes requirements described in [17, 20, 21] by adjusting its collection mecha-
nism to different environmental contexts and situations, which are termed adaptive
data collection strategies and will be described in Section 7.5.

7.4.4 FINSEC Multi-layer Security Probes

The FINSEC probes implemented for data collection and analytics are CCTV
probe, Access Control probe, Network Skydive probe, SIEM probe, P2P Payment
probe, FaceID probe, and Syslog/App Login as shown in Figure 7.2. This section
describes these in brief.

7.4.4.1 CCTV probe

The CCTV probe monitors CCTV, analyzes movements, and detects physical
events that may cause threats. The analytics service produces events coming from
observations of physical interactions by CCTV.

7.4.4.2 Access control probe

The Access Control probe correlates cyber-physical events by checking the access
to a secured area by both the use of a badge and a fingerprint and the state change
signaled by movement sensors, vibration sensors, gas sensors, and temperature sen-
sors. Data access events indicate legitimate authentication through HID (Human
Interface Devices) readers and fingerprint readers.

7.4.4.3 Network Skydive probe

Skydive is an open source real-time network topology and protocols analyser. It pro-
vides real-time insights on network activity which can be used for anomaly detec-
tion. It provides agents that act as data collectors, employing efficient mechanisms
to control the granularity of data collected and collection intrusiveness, which
ensure minimal CPU, memory and network overheads on the monitored system.
These mechanisms allow for extra flexibility in capturing network topology and net-
work flow data, as compared to other existing tools. The challenge is to efficiently
collect data with minimal disturbance to the production workloads. This includes
memory and CPU but also the network itself that is shared in some level between
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the monitoring and data acquisition tooling and the production workloads. In addi-
tion to the common methods, sFlow, netFlow, pcap, etc., a modern advanced net-
working infrastructure for Host level capturing known as bpf and eBPF is utilized.
Those capturing methods make use of Linux Kernel and outperform legacy meth-
ods in a wide range of scenarios. With ebpf/bpf capturing, it is possible on one
hand to limit and slice the networking data captured to some defined value, and
even to change dynamically the capture to fit to on-going security demands and
on the other hand allow much more efficient capturing that required significantly
less CPU and Memory. All this optimization is achieved through configuring and
re-configuring of the frequency of data collection based on different adaptive strate-
gies. This is achieved using the probe configuration data model.

The Skydive probe is composed of Skydive Agents that collect topological infor-
mation (the Hosts, Switches and NICs (Network Interface Controllers) in the sys-
tem) and flow information (the L3 traffic streams; using powerful protocols analyz-
ers to understand the traffic). This information is reported by the Skydive Agents
to a Skydive Analyzer which aggregates the information at the cluster level and
stores it in a time-series database. Figure 7.3 provides a multi-layer Skydive probe
architecture.

The Skydive Analyzer exposes the real-time Flow information via a WebSocket
which enables construction of Export pipelines. It processes these flows (transform-
ing, encoding, compressing, and storing) and thus facilitates the construction of
analytical tools that consume Skydive flow information.

The FINSEC Skydive Adapter (also implemented in Python) pushes network
data as observed data to the data collector layer by performing the following steps:

Figure 7.3. Multi-layer Skydive probe architecture.
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• Classify flows according to traffic type (internal, ingress, egress, unknown)
• Reformat flows to FINSTIX (FINSEC Data Model)
• Submit flows to data-collector layer

7.4.4.4 SIEM probe

Security Information and Event Management (SIEM) systems have been used in
IT since long ago to guarantee security in computer transactions and technological
environments. SIEMs collect information about the monitored IT system by using
agents deployed close to the infrastructure elements. This information is encapsu-
lated in the form of events, stored and correlated to identify anomalous behaviors,
discover possible threats, and detect security incidents. This way the SIEM offers a
security administrator a view of the security status and of the activity that is going
on in the monitored system.

In FINSEC, the SIEM probe is based on the XL-SIEM (Cross-Layer SIEM) tool
developed by Atos [22], which produces alarms by correlating events received from
different sources to offer extended information to other components. The event
sources are typically application logs and sensors such as HIDS (Host Intrusion
Detection Systems), NIDS (Network Intrusion Detection Systems), and AntiVirus.

7.4.4.5 P2P Payment probe

The P2P Payment Probe includes the following three modules that contribute the
following features to the FINSEC platform: The P2P Pay module monitors and
collects data of peer-to-peer payments sent on Blockchain infrastructure by end
users via their commercial banks; The Block chain module monitors and collects
Blockchain infrastructure parameters useful for anomaly detection on payments
sent on Blockchain and Blockchain itself; and The Actuation module provides a
web service interface to send specified events and commands to P2P Payment probe.

7.4.4.6 FaceID probe

The FaceID probe is two factors identification probe that combines physical level
(face recognition) and credential entering to authenticate users.

7.4.4.7 Syslog/App Login

Syslog Probe analyzes the logs generated by the internal Bank monitoring infras-
tructure. It is installed inside the Bank premises in a virtual machine with access
restrictions to users and software that can be added.

The responsibilities of the Syslog probe are to send initial information to the
data collector with the FINSTIX x-assets, x-probes, x-probe-configurations, to
monitor a local database which stores in near real time all the syslog events pro-
vided by the Bank’s internal monitoring infrastructure, to filter and analyze records
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received from the Syslog, and to generate corresponding x-event and observed-data
FINSTIX objects based on a set of rules; and the events generated are related to
a predefined threat providing the collaborative risk module the ability to perform
risk calculations.

7.5 Adaptive Data Collection Strategies

The FINSEC data collection strategies are based on security threats, content vari-
ation, collection rate, bandwidth variation, application needs, communication
dynamics, and environmental context change which all are addressed in the ensuing
sections.

7.5.1 Content Variation and Security Threats

To adapt the collection rate to content variations, FINSEC will implement the
adaptive sampling rate algorithm that is defined and presented in [7]. The algo-
rithm uses a score for sets similarity, which is defined in this study. The algorithm
computes the similarity between datasets collected during successive slots of mon-
itoring. Further, the amount of the redundant data is determined based on the
similarity score; thus, the size of the data sent for further processing is reduced.

To adapt the collection rate to security threats, the predictive analytics analyzes
collected data and predicts security attack, threat, or anomaly. Then, predictive
analytics initiates mitigation measure, in this case adaptive data collection strategy
via the FINSEC mitigation service. The FINSEC mitigation service instructs the
FINSEC Mitigation Enabler to adapt the collection rate. The FINSEC Mitiga-
tion Enabler instructs the Field tier probe to re-configure collection rate and the
Field tier probe re-configures its collection rate and pushes data accordingly, thus
adapting the rate of data collection based on the security context.

7.5.2 Anomaly Detection Driven Data Collection

Figure 7.4 shows a generic anomaly driven adaptive data acquisition approach pro-
posed for the FINSEC platform. It is composed of three components: (1) Mit-
igation rules defined using FINSTIX and stored in the Data layer. These rules
will define what events or attacks should trigger probe activations. Mitigation
service will apply these rules to decide when and which Probe Mitigation API
should be called; (2) Probes Mitigation API exposed by the probes to control
what operations should be performed by probes for the mitigation; and (3) Analyt-
ics and probes produce event and attack mitigation triggers to trigger mitigation
rules.
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Figure 7.4. Anomaly driven adaptive data acquisition.

For Skydive probe the above components become: Mitigation rules specify
which Skydive probe Actuation APIs should be called for anomalies detected on
network data (Network events) or cyber-physical attacks as reported by Anomaly
Detection service; Skydive’s probe exposes an API to control what types of the net-
flows should be acquired; and Anomaly Detection service reports network anoma-
lies and cyber-physical events to the Data Layer to trigger adaptive rules (e.g., start
acquiring internal traffic).

The adaptive anomaly detection comprises Pattern Detection Engine (PDE),
which correlates cyber-physical events and detects cross domain anomalies, and
Machine Learning Engine (MLE), which learns typical behavior of the system and
detects anomalies on Netflows. The online adaptive training updates models with
the most recent observations and gradually “forgets” old behaviors. The Big data
Spark-based process aggregates events over time periods and anomaly scores based
on the deviation of the observed behavior from the learned models. The platform
is modular that can be easily extended with new feature extractors, models, scorers,
and pattern detection components.

The adaptive strategies for anomaly driven data collection include more histor-
ical data, physical measurement, change of acquisition, and outlier-driven rate of
acquisition. The adaptive approach consists of adaptive rules defined using FIN-
STIX and stored in the Data layer; Adaptive service applies these rules to decide
when and which Probe Activation API should be called, and Probes Activation API
exposed by the probes to control how the data acquisition should be adapted.

7.5.3 Enhanced Security Analysis

The Atos XL-SIEM probe has been extended in FINSEC to support adaptive secu-
rity data collection and this way, enhancing SIEM’s security analytics capabilities.
With this purpose, a new functional component has been designed, the SIEM Probe
Analysis module, which is aimed to be deployed in the FINSEC platform. This
module is in charge of analyzing the information received through the FINSEC
Data Collector, from the SIEM Probe, and invokes the XL-SIEM Mitigation API
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to take the necessary adaptive actions. Through this, the SIEM probe can reconfig-
ure itself and the different sensors involved in the data collection, deployed at the
target IT infrastructure of the organization, and thus adapts to a new cybersecurity
context.

The SIEM Probe Analysis module analyzes FINSTIX data available in the FIN-
SEC platform, together with other relevant Threat Intelligence retrieved from exter-
nal sources. Two different strategies for FINSTIX data analysis are used:

• Detection of noisy events to adapt the quantity of events received from
the SIEM probe. This is implemented by creating filtering rules in the SIEM,
on-demand, to mute some specific kind of events. This improves the data
collection rate in the SIEM probe by lowering down the frequency of periodic
non-relevant events. Events are still collected in the SIEM but not reported
to the FINSEC platform;

• Exploitation of IoCs (indicator of compromises) to improve or extend
SIEM capabilities to detect security incidents and thus enhance the qual-
ity of events received from the SIEM. The SIEM Probe Analysis module
will retrieve IoCs from external sources [e.g., OTX (Open Threat Exchange)],
related to events or attacks reported to the FINSEC Platform. IoCs related to
suspicious activity already detected in the FINSEC Platform contain valuable
and high-quality information that, for instance, an IDS can use to improve
or extend their detection capabilities.

7.5.4 Application-driven Innovative Attacks

In the context of the detection algorithms investigated, the focus is on the detection
of application layer attacks. Threats like Slow DoS Attacks (SDA) [23], tunneling,
and covert channels [24] belong to this category. In the anomaly based intrusion
detection topic, after appropriate training on allowed scenarios, a characterization
of legitimate conditions is accomplished and used for detection. Particularly, the
aim of the algorithm is to monitor and analyze run-time traffic (through on-line or
off-line techniques), hence flag as legitimate or anomalous the analyzed traffic.

In order to analyze a potentially anomalous situation, a capture of network traf-
fic is needed to extrapolate predefined representative features able to characterize
the considered scenario. If we consider, for instance, Slow DoS Attacks [23], such
features may be related to the Delta parameters, extrapolated from network traffic
and representing timings used during single connections lives [25]. By using such
approach, by considering each Delta parameter, a proper threshold is defined as
a consequence of the initial training [26]. The legitimate traffic is characterized
to be included under the defined threshold, with a given confident interval. When
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Figure 7.5. Overview of delta parameters dynamic behavior over time, for HTTP traffic

between 00:00 and 24:00.

processing run-time traffic, each connection related to a Delta parameter exceeding
the defined thresholds will be flagged as anomalous, hence, potentially legitimate.

Although such approach is potentially able to identify run-time threats, in par-
ticularly advanced scenarios, a malicious user may attempt to elude the detection
system, by modifying the attack to make it behave like a legitimate condition. In this
case, if the detection system is not able to refine the calculated Delta thresholds in
real time, hence making the Delta threshold assume some sort of “dynamic” behav-
ior, detection may fail, hence expose the system to the attack without triggering any
detection.

Figure 7.5 reports the means of the Delta parameters over an entire day, from
00:00 to 24:00, when computing them on a network composed of around 50
nodes, in office environment, for HTTP network traffic.

As can be seen, their values are not static over time, but, instead, they assume
some sort of “dynamic” behavior depending on the day time. Such behavior may
depend, for instance, on scheduled backup activities executed overnight or on users
browsing during office hours. Because of this, a first detection approach is based a
dynamic adaptation of the Delta thresholds depending on the time of the day the
(potentially anomalous) traffic is captured. By adapting the thresholds through such
approach, it is possible to improve the detection of unknown threats, by contextu-
alizing the detection algorithm on the time of the day considered. An extension of
this approach may also monitor an entire week of traffic, to also extend the concept
to non-working days like Saturday and Sunday, even though the run-time thresh-
olds update activities.

By considering adaptive approaches, in conjunction with the approach described
above, it is possible to dynamically enable and disable the network analysis process
with a function of the network status. For instance, considering protection from
slow DoS threats, it is possible to enable such analysis only when critical conditions
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are measured. Hence, considering attacks targeting network services, it is possible
to adaptively monitor traffic only when the service load exceeds a predefined thresh-
old. This means that in case a network service is under loaded, or a partial DoS [27]
is executed, protection may not be enabled, also in view of the application a green
approach to cybersecurity [28]. Similarly, adaptive data collection and consequent
analysis may therefore be enabled only for the features that characterize specific
categories of attacks.

By considering a network platform like FINSEC, the detection algorithm may
be represented as the execution of the following steps:

1. The network probe captures information from live traffic.
2. The data collector receives captured information for collection/storage.
3. The data monitor component extrapolates features from collected data.
4. The data analyzer component identifies anomalies/threats
5. The data adapter component re-configures the detection system, involving

steps 3 and 4.

By adopting this approach is possible to build an adaptive detection system able
to identify cyber threats.

7.6 Implementation and Validation

This section provides a prototype implementation of the adaptive and intelligent
security monitoring infrastructure for the FINSEC project and its validation with
the anomaly detection example.

In this first phase, a prototype implementation of the adaptive and intelligent
security monitoring infrastructure is provided, which covers predictive analytics
describing the most relevant approaches to analyze the collected data and detect
attack patterns. In addition, the security threat and collection rate strategies are
implemented. Various alternative adaptive strategies are also defined: (i) appli-
cation layer adaptive collection strategies (Request start duration, Request dura-
tion, Request management duration, Response duration, and Next request start
duration), (ii) adaptive techniques for data acquisition for anomaly detection
(More historical data, Physical measurement, Change of acquisition, and Rate
of acquisition), and (iii) Adaptive data collection for enhanced security analysis
(Data Collection manager for reconfiguring the infrastructure of XL-SIEM agents,
Threat intelligence update service, and Adaptive security module, which analyzes
the events and alarms generated). The combination of these three architectural ele-
ments implements a feedback loop of collection, detection, and prevention that
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allows for early detection of security compromises and consistently makes security
analysis more effective.

7.6.1 Data Collector and Mitigation Enabler

The Data Collector (Monitor) conveys information from the probes to the Data
Layer, and it may also perform additional functions for each probe. For the Skydive
probe, it summarizes, at a regular interval, all “observed-data” objects seen during
this interval and sends this summary to the Data Layer. The summary is created as
an “x-collected-data” object, whose structure is fully described in The FINSEC Data
Model (FINSTIX). It includes a list of IDs of the summarized objects, a sequence
number and a time range bracketing the first and the last observed object. The
Data Collector has three endpoints for the Skydive probe, supporting respectively
ingress, egress, and internal traffic. Each of these traffic types is treated separately
by the Data Collector, so that separate summaries are created for each traffic type,
with separate sequence numbering.

In the prototype implementation, the Data Collector receives STIX objects of
type “observed-data” from the probes. The Data Collector stores these objects in
the Data Layer.

In the case of the Skydive probe in particular, the Data Collector also performs
a summarization service of the “observed-data” objects received. Each “observed-
data” object contains a set of “x-skydive-flow” objects representing native Skydive
flow objects. At a regular, configurable interval (which is 10 minutes by default),
the Data Collector sends an “x-collected-data” object to the Data Layer. This object
contains a summary of all the “observed-data” objects received from the Skydive
probe within the last interval. A separate series of ‘x-collected-data’ objects is cre-
ated for every combination of network flow type (ingress, egress, and internal) and
organization ID, and every object contains a sequence number within that series.
These “x-collected-data” objects are intended to inform the analyzer that new data
are available in the Data Layer.

7.6.1.1 Interface to Skydive

Skydive is a real-time network topology and protocol analyzer that can be used
to capture network topology and data flows. The Skydive architecture consists of
two types of software: agents and analyzers. The purpose of an agent is to collect
topology and flow data various types of probes. Thus, an agent needs to be deployed
on each computer to be monitored. The purpose of an analyzer is to consolidate the
information collected from a set of agents. Only one analyzer is needed, although
there may be more than one if redundancy is required.
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Figure 7.6. Anomaly detection with Skydive probe.

Each analyzer offers two types of interfaces for accessing its functions. The first is
a graphical user interface for interactive use of management and monitoring func-
tions. The second is an API that can be integrated with applications. This API
is based on the JSON format for exchanging data and the Gremlin language for
executing queries on the topology graph.

Figure 7.6 depicts the end-to-end data flow from Skydive probe to Anomaly
Detection service. Here are the main steps of the dataflow:

1. The netflow collected by Skydive Network probe are pushed to FIN-
SEC Data Layer through FINSEC Data Collection API as “observed-data”
objects.

2. Data Collection service periodically produces “x-collected-data” object that
references the “observed-data” objects.

3. Network Anomaly Detection Engine analyzes new “observed-data” objects
and reports anomalies as to FINSEC Data Layer as “x-event” object.

4. Alerts Detection Engine correlates reported events according to “x-attack”
models and report “x-attack” instances to FINSEC API Gateway

5. Mitigation Service (not implemented yes) will analyze produced “x-events”
and “x-attacks” to activate adaptive Mitigation API of Skydive Network
probe.

7.6.1.2 STIX and customizations

Structured Threat Information Expression (STIXTM) is a JSON-based language
for expressing cyber threat and observable information. A STIX [29] description
consists of a set of STIX Domain Objects (SDOs) and a set of STIX Relation-
ship Objects (SROs). The SROs describe relations between the SDOs, forming a
graph. In addition to these types of objects, there are also STIX Cyber Observables,
which are used by various SDOs to provide additional context to the data that they
characterize.
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The STIX language can be customized and remain compatible with STIX, as
long as certain syntactic rules are observed. In the case of the Data Collector, two
custom STIX object types, “x-skydive-flow” and “x-collected-data,” were intro-
duced. This was necessary, since Skydive delivers very detailed information on
flows in its own JSON-based format, which is incompatible with STIX. Each of
these flow descriptions is converted into an “x-skydive-flow” STIX object contain-
ing the same structure and the same properties as the Skydive flow object, except
that the properties are converted to be compatible with STIX syntax, and “type”
and “extensions” properties are added. The “x-collected-data” object type is used to
summarize the aforementioned objects.

7.6.2 Predictive Analytics

The general goals of predictive analytics models are to reduce false-positive rates
and to deal with a large amount of data for training and prediction, imbalanced
datasets, a large number of features, and categorical and continuous features [30].
Random Forest models outperform in achieving these goals due to their advantages
of low training time complexity, fast prediction, resilience to deal with imbalanced
datasets, embedded feature selection method and intrinsic metrics to rank features
by importance, and for their ability to deal natively with categorical and continuous
features [30].

To evaluate approaches for the adaptation of the data collection strategies and
intelligent processing, we have studied and tested predictive analytics based on
machine learning algorithms. At this stage, the following machine learning algo-
rithms have been selected for the predictive analytics toolkit: Support Vector
Machine (SVM) using the RBF (Radial Basis Function) kernel method, K-nearest
neighbors (KNN), Decision Tree using the Classification and Regression Tree
(CART) algorithm, Random Forest, and Multilayer Perceptron (MLP). These algo-
rithms are often applied to solve classification problems. We used the scikit-learn
package, Python 3. The PyCharm Integrated Development Environment (IDE)
was used for coding. pPckle files have been generated for each model and saved.
Furthermore, we explored the possibility of using deep learning algorithms and
tested a multi-layer perceptron neural network with 3 layers (on the CICIDS 2017
(Intrusion Detection Evaluation Dataset) dataset mentioned below).

The toolkit has been tested using the datasets KDDCup-99 [31], CICIDS
2017 [32], and UNSW-NB15 [33], which are described below.

The KDDCup99 is a relatively old dataset that was used for “The Third Inter-
national Knowledge Discovery and Data Mining Tools Competition.” The compe-
tition’s task was to build a predictive network intrusion detector model capable of
distinguishing between attacks and normal network traffic. This database contains
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a standard set of data to be audited, which includes a wide variety of intrusions sim-
ulated in a military network environment. All features provided with this dataset
have been applied.

The CIC IDS 2017 dataset was created by the Canadian Institute for Cybersecu-
rity. It contains benign traffic and the most up-to-date common attacks. According
to the authors, the network traffic analysis was performed using CICFlowMeter
with labeled flows based on the time stamp, source, and destination IPs, source
and destination ports, protocols and attack (CSV files). Generating realistic back-
ground traffic was prioritized. The authors used their B-Profile system (Sharafaldin
et al. [34]) to profile the abstract behavior of human interactions and generate nat-
uralistic benign background traffic. The dataset is built upon the abstract behavior
of 25 users based on the HTTP, HTTPS, FTP, SSH, and email protocols. The CIC
IDS 2017 dataset has over 2.83 M examples (2.27 M benign and 557,646 malicious
ones) in contrast to KDDCup-99 dataset with 148,517 flows including 77,054
benign and 71,463 malicious ones. For prediction, we used all provided features.

The UNSW-NB15 dataset was created as an IoT dataset in the Cyber Range Lab
of the Australian Centre for Cyber Security (ACCS). The authors aimed to gener-
ate a hybrid of real modern normal activities and synthetic contemporary attack
behaviors. According to the authors, the raw network packets of the UNSW-NB
15 dataset was created by the IXIA PerfectStorm tool. This dataset has nine types
of attacks: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance,
Shellcode, and Worms. The authors used the Argus and Bro-IDS tools to generate
totally 49 features with the class label. All features that were included in the datasets
have been used.

The test results for these three datasets are depicted in Tables 7.1–7.4, respec-
tively. The tests were done using a laptop with Intel(R) Core(TM) i5-5300 U CPU,
2.30 GHz, RAM 16.0 GB, and 64-bit OP.

Table 7.1. Classification results for KDDCup-99 dataset.

Training Training Testing Testing
Set Time Set Time Accuracy

SVM 3428901 3721.03 1469529 648.56 0.922812634431

KNN 3428901 88.5 1469529 24.94 0.986108253728

Decision Tree 3428901 26.394 1469529 4.74 0.9983703703703

RF (100 estimators) 3428901 712.58 1469529 43.645 0.999948282784

RF (300 estimators) 3428901 2095.318 1469529 120.91274 0.99994896327

RF (500 estimators) 3428901 3424.962 1469529 229.4986 0.999949643763
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Table 7.3. Classification results for UNSW-NB15 dataset.

Training Training Testing Testing
Set Time Set Time Accuracy

SVM 82332 201.4 17534 37.2 0.720092009961

KNN 82332 14.32 17534 4.43 0.874246715967

Decision Tree 82332 0.1248 17534 0.0468 0.9474364579967

RF (100 estimators) 82332 1.1856 17534 0.234 0.958576507043

RF (300 estimators) 82332 3.2916 17534 0.5928 0.9625738272

RF (500 estimators) 82332 5.2884 17534 0.9984 0.9689476329

This preliminary study has shown that the SVM method has performed inade-
quately for training/testing time. It has also achieved lower accuracy for the UNSW-
NB15 Dataset. We concluded that this method could be excluded from further
work stage. The random forest method performs well while requiring slightly more
time for training than the decision tree method; the deep learning MLP also per-
forms well, with training time between random forest and the decision tree algo-
rithms, and validation accuracy comparable with both, especially from the second
epoch (after which the validation accuracy does not improve much).

In this preliminary study, we have used the datasets that were available online.
All features supplied with these datasets have been applied. In the next stage, we
plan to define how to select a feature set that produces acceptable results with prede-
fined accuracy while reducing the volume of the collected and stored data. Further,
we need to develop methods for predictive analytics that operate on real-time data
collections and investigate new efficient predictive algorithms based on deep learn-
ing techniques. We, therefore, need to investigate how combining various deep
learning approaches can improve the quality of the attack detection.

7.6.3 Anomaly Detector Service

7.6.3.1 Architecture overview

The Anomaly Detection service is composed of External and Internal Anomaly
Detection services as depicted in Figure 7.7. The Internal Anomaly Detection ser-
vice is part of the FINSEC infrastructure, and the External Anomaly Detection
service is running outside of the FINSEC infrastructure on the IBM cloud. The
External Anomaly Detection service is composed of two analytic engines: Network
Anomaly Detection engine and Attack Detection engine.

Other related FINSEC components are the Dashboard, Data Layer, Data
Collector, and the Skydive probe. Figure 7.8 shows the data flow between the
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Figure 7.7. External and internal anomaly detection services.

Figure 7.8. Anomaly detection data flow.

above-mentioned components and the Anomaly Detection service, starting from
the probe data acquisition and culminating in attack detection and reporting to the
dashboard. Described below are the main steps of the data flow:

1. The Netflow data is acquired by the Skydive Network probe and pushed into
the Data Collector.

2. The Data Collector aggregates the data and pushes it to the Data Layer.
3. The Netflow data from the Data Layer is processed by the Netflow Anomaly

Detection Engine of the Anomaly Detection Service.
4. The Netflow anomaly events detected in the previous step are reported to the

Data Layer.
5. Netflow anomaly events along with events produced by other services are

analyzed by the Attack Detection Engine.
6. The Cyber-physical attacks that are detected in the previous step are exposed

to the FINSEC Dashboard.
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7.6.4 SIEM Probe Analysis

As previously introduced in Section 5.3, the Atos XL-SIEM technology has been
extended with a new module, the SIEM Probe Analysis module, that supports
the implementation of adaptive data collection strategies with the ultimate goal
of improving the quality of security events collected and controlling the data col-
lection rate. This module, deployed as a service in the FINSEC platform, works
in combination with other services and modules of the XL-SIEM probe running
in the field. Figure 7.9 depicts all the elements that compose the XL-SIEM probe
adaptive infrastructure and illustrates their intended deployment. The figure also
shows the interaction of these elements with other services and components of the
FINSEC platform, such as the Data Collector.

On the left hand side of Figure 7.9, Monitored Infrastructure is the target infras-
tructure under surveillance. This infrastructure is composed by different logical and
physical assets such as laptops, servers, routers, printers, and the local area network.
These elements are monitored by different typical security sensors or probes such
as Host-based Intrusion Detection System (IDS), Network-based Intrusion Detec-
tion System (NIDS), or Antivirus (AV), all of them under the control of one or
more XL-SIEM agents. XL-SIEM agents are in direct communication with the XL-
SIEM probe to send security events or retrieve monitoring configuration updates.
XL-SIEM Probe represents the core of the XL-SIEM technology. The Data Collec-
tion Manager module, the Data Collection Rules database, and the Configuration
Update Service, which will manage the configuration of the remote monitoring
components, deployed at the Monitored Infrastructure. This configuration can be
updated as a result of an invocation of a specific adaptive action through the XL-
SIEM Mitigation API. This API is used by the XL-SIEM to allow modifying the

Figure 7.9. Overview of the XL-SIEM probe adaptive infrastructure.
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configuration of the XL-SIEM, particularly the configuration of data collection
process.

On the right hand side of Figure 7.9, the modules and services are represented
which are running under the umbrella of the FINSEC platform. This is the case of
the SIEM Probe Analysis module and the Data Collector with the corresponding
database to store the collected data. As part of the SIEM Probe Analysis module,
the Adaptive Security Analysis (ASA) service is in charge of, first, analyzing the
information received in the data-collector from the SIEM Probe and, second, tak-
ing decisions on which adaptive strategy to invoke through the XL-SIEM Mitiga-
tion API. The Threat Intelligence Update Service (TIUS) supports the ASA service
and is responsible for retrieving additional high-quality information about certain
security events under analysis. This additional information can be obtained from
another FINSEC source of security intelligence, such as the Knowledge Base, or
from external sources of IoCs, e.g., Open Threat Exchange (OTX) [35].

Each FINSTIX instance received from the XL-SIEM probe at the Data-
Collector is processed at the ASA to extract candidate IoCs from the list of
attributes, e.g., URLs, IPs, domains, malware hashes, etc. If the IoC is a public
IP, ASA uses the TIUS to consult in the OTX service and returns a list of related
“pulses.” The TIUS can subscribe the XL-SIEM probe to pulses in order to auto-
matically get new relevant IoCs. The subscription is done only if it is a trusted
pulse, i.e., if the number of subscriptions that this pulse already have is above a
threshold. Through this process, also known as IoCs Expander, the ASA compo-
nent can, for example, dynamically update the NIDS (e.g., Suricata [36]) with new
rules retrieved from the official NIDS update service (Emerging Threats [37], in
the case of Suricata). This way, the XL-SIEM probe adapts to collect additional
relevant security events from the monitored infrastructure.

On the other hand, the decision of the ASA after the analysis of the FINSTIX
collected data could be to reduce the quantity of events received from the XL-SIEM
probe for various reasons, e.g., because the information about a specific IP address
is considered not relevant (i.e., it is in a whitelist) or the probe can be instructed
to send FINSTIX events wrapping XL-SIEM alarms (high-level correlated data)
instead of XL-SIEM events (low level security information). The XL-SIEM probe
can be instructed to mute a particular type of event through the invocation of the
corresponding method of the Mitigation API. This results in one or more filtering
rules created in the XL-SIEM probe. These rules do not prevent the XL-SIEM to
generate the event and its corresponding FINSTIX instance but will not send it to
the FINSEC Data Collector. This way, the muted events can be recovered upon
request at a later point in time if necessary. Filtering rules can be retrieved and
removed too, by using the corresponding methods of the Mitigation API.
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7.6.5 Innovative Attacks

If we consider the last generation threats, it is important to consider that they may
expose characteristics that make them improve their efficacy, compared to old-style
threats. If we consider, for instance, the Slow DoS Attacks [23], the focus of our
work, compared to old-style flooding threats, the quality of the attack is in this case
enhanced, in terms of effects on the system and requirements to the attacker. This
is due to the fact that during the execution of an “innovative attack” like the Slow
DoS, almost all the packets composing the communication between the attacker
and the victim contribute and are important for the success of the attack itself. This
means that there is less waste of packets, from the attacker’s perspective, compared
to old-style flooding attacks, whose approach is to send a huge amount of packets
to the victim to attempt to saturate its resources, in case of a slow DoS, a smarter
approach is adopted. In virtue of this, reduced attack resources (CPU, memories,
bandwidth, etc.) are required.

Considering innovative attacks we have investigated, it is important to consider
that the Slow DoS category we have investigated is able to target application layer
protocols based on TCP. Known attacks [23, 27] are found in literature for proto-
cols like HTTP, HTTPS, or SMTP. Nevertheless, it is important to consider that
the same concept can be adapted and ported to affect different protocols as well. In
this case, it may be required to adapt the attack to make it able to target the consid-
ered protocol. If we consider, for instance, the MQTT protocol [38], widely used in
the machine-to-machine (M2M) context, it may be required to send specific com-
mands like CONNECT (with consequent reception of CONNECT+ACK) mes-
sages to perpetrate a long request DoS attack [23]. Preliminary tests executed [39]
against a real MQTT service supporting secure communications are shown in
Figure 7.10.

Figure 7.10. Results of tests of the SlowITe slow DoS attack against MQTT service [29].
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Figure 7.10 shows that the attack is successful, even on encrypted communica-
tions, and it is able to initiate a large number of connections. Tests also reported
that the denial of service is reached on the server just after the establishment of 1012
connections that are closed around 90 seconds after their establishment. Although
such number of connections may appear high, in this case, since the application
layer daemon is targeted, compared to the number of TCP connections, a network
host is able to manage (in the order of tens of thousands), such number is consid-
ered low. In addition, it is important to consider that no application layer packets
are exchanged after the establishment of a connection. Hence, required bandwidth
is extremely low. Indeed, we measured that around 340 Kbps were used required
for the attack.

In the cyber-security topic, it is therefore important to consider that innovative
attacks may create serious damage to the network and its components. Therefore,
it is extremely crucial to deploy appropriate monitoring and protection methods
and, at the same time, investigate the cyber-security field to acquire knowledge on
emerging threats.

Concerning detection from attacks that target specific protocols like MQTT, it
is important to consider that efficient detection is still an open issue in research [39],
since legitimate clients exploiting such protocols may be characterized by long times
of inactivity. This can be also found on SSH protocol, for instance, where connected
users may not exchange (at the application layer) any data with the server, even for
hours, without experiencing any connection closure. In virtue of this, it is particu-
larly important to investigate the topic and to adapt slow DoS detection algorithms
to such kind of “silent” protocols.

7.7 Conclusions

This chapter presented the FINSEC adaptive and intelligent data collection and
analytics system for securing critical financial infrastructure. Making the data col-
lection intelligent, resilient, automated, efficient, secure, and timely is essential to
economizing of resources, accessing the right information at the right time, and
quickly spotting, learning from, and addressing zero-day threats. This is achieved
through the configuration of configurable collection probes and the adaptation of
different collection strategies. The chapter further addresses how, inter alia, (i) the
nature and quality of collected data affects the efficiency and accuracy of methods
of attack detection and defense, (ii) the detection capability can be improved by
correlating wide-ranging data sources and predictive analytics, (iii) the rate of the
data collection at the various monitoring probes is tuned by managing the appropri-
ate levels and types of intelligence and adaptability of security monitoring, (iv) the
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optimization of bandwidth and storage of security information can be achieved by
rendering adaptiveness and intelligence and by integrating smart security probes
and a set of adaptive strategies and rules, and (v) the increased automation is
achieved through a feedback loop of collection, detection, and prevention that
allows the early detection and prevention of security compromises and consistently
makes security analysis more effective.

The chapter also presented the adaptive data collection strategies, implementa-
tion of the different components of the system, and validation of the predictive
analytics algorithms for intelligent processing using publicly available and widely
used datasets with promising results. In our future work, we plan to validate the
efficiency of all components in real-life use-case scenarios of the FINSEC project.
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