

## Securing Critical Infrastructures In The Financial Sector

**Integrated Security** 





Understanding the need for collaborative security



## **Examples of physical and cyber assets**





## **Business motivation for integrated security**

Cyber and physical security "SILOs"

Four models of attacks:

- Attacks with only physical aspects
- Attacks with only cyber aspects
- Physical-enabled cyberattacks
- Cyber-enabled physical attacks

Integrated solutions:

- Augmented vulnerability assessment methodology for physical security in the cyber domain, Vulnerability Assessment (VA), proven based on simulation and costbenefit analysis
- Integrated modelling approach for cyber-physical systems for power grids and critical infrastructures for energy



## **Business motivation for integrated security (cont.)**

- Integrated security methodologies based on various disciplines and techniques e.g., control theory, optimization, game theory
- do not take a holistic data-driven approach
- Data driven systems do not provide the non-functional properties (e.g., scalability, performance) needed for their deployment at scale
- Rarely address the special requirements of the financial sector: asset modelling, event correlation and regulatory compliance (e.g., MiFID, GDPR, PSD2)



## **Existing reference architectures**

- Industrial Internet Reference Architecture (IIR): focus on the implementation of systems with both cyber and physical parts [typical examples of OT (Operational Technology) and IT (Information Technology) convergence
- Internet Security Framework (IISF): specifies security functions for IIoT systems which comprise cyber and physical assets

#### Influence the development of platforms for integrated security:

Design of Horizontal Security Functionalities Specification of Data-Driven Security Functionalities



# **Challenges to Protecting Interconnected Cyber-Physical Systems in the Finance Sector**

## 1. Integrating Information and Actions at Cyber & Physical Domains

- Cyber & Physical Security are still "siloed" Organizational & Technical Silos
- Need for Integrated Modelling and Handling of Information
- Cyber-Physical Threat Intelligence i.e. the Core Topic of FINSEC Project

### 2. Poor Stakeholders' Collaboration

- Limited Sharing of Information across Stakeholders
- Limited Exploitation of Shared Information



## How is FINSEC addressing Integrated Security?

- Integrated Architecture
- Integrated Threat Modelling: FINSTIX, Security Knowledge base (introduced later in this course) → transforming observed data from the physical and digital world into Threat Intelligence information
- Correlation of Cyber-Physical Information (introduced later in this course) → Integrated Cyber-Physical Information Sharing







## **FINSEC RA: Driving Principles**

| Data driven principle                  | <ul> <li>enables the development, deployment and integration of data driven security systems</li> <li>emphasis on the collection &amp; processing of security data, flow across the financial services supply chain</li> </ul> |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Separation of Aspects and<br>Concerns  | <ul> <li>Reference Architecture Logical Design defined in term of (services) modules</li> <li>every single module of the architecture should do one thing well</li> </ul>                                                      |
| Modules are Individually<br>Manageable | <ul> <li>implemented as manageable &amp; independently<br/>deployable service component</li> </ul>                                                                                                                             |



## **FINSEC RA: Driving Principles (cont.)**

| Clearly Defined Interfaces between the Modules | <ul> <li>clearly defined Interface to other modules</li> <li>any module in the RA shall communicate with other modules via a well-defined API</li> </ul>                                                                  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Synthesis Principle                            | • FINSEC Reference Architecture can have multiple instance, being agnostic from implementation, the basic design principles suggest that it could be easily designed to be implemented using a Micro Service Architecture |
| Inter-Domain Collaboration<br>Support          | <ul> <li>RA covers systems that span multiple administrative domains, supporting stakeholders' collaboration</li> </ul>                                                                                                   |
| Managed Security Paradigm                      | <ul> <li>enables the provision of security services as managed<br/>security services i.e. according to a utility driven, pay-as-<br/>you-go paradigm</li> </ul>                                                           |



## **Microservices Architecture's Tiers**

| Field Tier                           | lower level and includes the probes and their APIs, whose role is extracting raw data from the physical and logical assets to be protected against threats          |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Edge Tier                            | contains the Actuation Enabler and a Data Collection module, which is needed to filter the needed information during their flow                                     |
| Data Tier                            | logical layer where information is stored, organized into three<br>different storage infrastructures, providing consisting data access<br>APIs to all other modules |
| Service Tier                         | kernel applications and the security toolbox                                                                                                                        |
| Business Client<br>Applications Tier | where end-users and business applications may actually get benefits from the platform capabilities                                                                  |



#### **FINSEC Reference Architecture**





## **Security Platform Architecture – Building Blocks**

| Monitoring<br>Probes          | In order to collect security information, the platform makes provisions for monitoring probes on both cyber and physical security elements                                                                                                                                             |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Legacy Security<br>Systems    | The platform supports the integration of legacy security systems<br>that collect, analyze and persist security information & events.<br>Typical examples of such systems, include SIEM (Security<br>Information and Event Management) and CCTV (Closed Circuit<br>TeleVision) systems. |
| Data Collection & Unification | The platform is a data intensive system that collects and consolidates security data from many different and heterogeneous sources                                                                                                                                                     |



### **Security Platform Architecture – Building Blocks (cont.)**

| Data Storage and<br>Persistence    | This module comprises data lakes ensuring that very large datasets of security information can be effectively persisted and managed                                                                                                                                                      |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Actuation and<br>Automation        | The platform provides the means for interacting with the field and<br>the systems of the critical infrastructure towards automating<br>security actions (e.g., as part of the implementation of a security<br>policy), as well as towards (re)configuring the operation of the<br>probes |
| Security<br>Intelligence<br>Kernel | The security intelligence kernel is the building block that extracts<br>security insights based on processing of the collected information<br>using advanced analytics. The kernel interacts with the Security<br>Knowledge Base                                                         |



### **Security Platform Architecture – Building Blocks (cont.)**

| Security Knowledge<br>Base               | The knowledge base comprises readily available security<br>knowledge, such as information about known threats, attacks,<br>malware and more. It helps to resolve attack and threat<br>patterns against known information |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dashboards &<br>Visualization            | The platform provides visualization of security information                                                                                                                                                              |
| Risk Assessment &<br>Compliance Auditing | These are two building blocks that are delivered as a service i.e. based on a Security as a Service (SECaaS) modality                                                                                                    |
| Supply Chain<br>Collaboration            | This module leverages information exchange/sharing<br>capabilities of the platform towards enabling collaborative risk<br>assessment and compliance auditing for the assets of the<br>critical infrastructures           |



#### **Security platform architecture**





#### **Microservices Architecture**

